

SECURE AND SUSTAINABLE SUPPLY OF RAW MATERIALS FOR EU INDUSTRY

Ana Teodoro
University of Porto

Funded by the European Union.
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HADEA. Neither the European Union nor the granting authority can be held responsible for them.

534! PROJECT OVERVIEW

46

S34I WILL BE BASED ON SATELLITE DATA, AIRBORNE, UNMANNED AERIAL VEHICLE (UAV), GROUND BASED AND CONVENTIONAL IN-SITU TECHNIQUES/METHODS AND FIELD WORKS. From the sky to the soil

S34I will research and innovate new data-driven methods to analyse Earth Observation (EO) data, supporting systematic mineral exploration and continuous monitoring of extraction, closure and post closure activities with the aim to increase European autonomy regarding raw materials (RM) resources.

"

5341 PROJECT OVERVIEW

WHAT

Explore and prototype new methods to analyse EO.

Demostrate its value to stakeholders (geology surveys, mining industry, local communities and policy makers) under ethics and EU values preservation.

WHY

Many datasets are still under-exploited from different European space based missions(e.g. COSMO-Skymed, EnMAP, PRIMSA, TerraSAR-X), EO based services are very promising from environmental and minning sustainability views.

EO based services are an independent tool to built trust on local communities and to improve policy and related legislations.

ADDED VALUE

Mining digital transformation towards its sustainability, security, and EU Raw Materials sovereignty.

Mining green transformation towards circular economy adoption and local communities better acceptance.

Promotion of open databases for future research.

New mine owner and operator independent tool for public awareness.

5341 PROJECT CONSORTIUM

WHO

EU wide interdisciplinary and complementary team from important EU mining countries embracing 12 important countries for mining sector from EU- Austria, Belgium, Germany, Spain, Finland, Greece, Ireland, Italy, Norway, Portugal, Romania, Slovenia.

The S34I Consortium is formed by 19 partners.

5341 PROJECT PILOTS

inProvided by AURUM

Land exploration in Spain

Aramo mine

The Aramo Plateau pilot study area lies within the central part of Principado de Asturias in Northern Spain and at the western closure of the Cantabrian Orocline Fold and Thrust Belt. The historic Texeo or Aramo mine lies on the eastern side of the plateau and is classed as an epithermal carbonate hosted copper – cobalt – nickel deposit. The study area is focused on the identification of broader zones of alteration of the host rocks and by association the exploration potential for further mineralization both proximal to the historical mine as well as for new target areas across the plateau.

gProvided by IGMS

Coastal exploration at the Iberian Peninsula Atlantic coast

Rin de Vigo

Ria de Vigo, is part of a system of several funnel-shaped estuarine inlets, Rias Baixas at the northwestern coast of Spain, formed by tectonic action and subsequent erosion. It exhibits suitable geological conditions (primary mineral source, weathering environment, means of transportation) for the occurrence of important CRM mineralizations including Ti, Sn, Li, REEs and Au placers, pegmatite, and hydrothermal deposits. The purpose of the study at Ria de Vigo is to investigate improved seabed mineral mapping, using novel EO-based methods, also by exploring the connection between seashore and coastal areas.

The **534** project is supporting the technical experiments and validation at different phases of the mining life-cycle:

- Onshore exploration to gain knowledge on cobalt (Co) deposits.
- Shallow water exploration to update the knowledge on coastal metallic placers.

gSource S34/GA

Extraction phase in Austria

The Gummern quarry produces roughly 1 Mio. to f highquality marble, both in open-pit and underground extraction sites. The mining procedure is accompanied by a range of technical challenges, mainly including proper quality control, sequencing / scheduling accompanied by geotechnical considerations on the stability of the slopes, as well as following the piling up of the waste dumps.

gsSource National Land Survey of Finland

Outokumpu

Three multimetal (Cu-Co-Ni-Zn also Au, Ag, pyrite concentrate) underground mines in Outokumpu, Finland. The study focuses on the water network including Outolampi pond on the mine site, that stands on the taillings, has pH around 2 and is not under a monitoring program and the lake Sysmäjärvi, Natura 2000 area, that is well monitored and that is affected by the industrial activities of the region.

Slource National Land Survey of Finland

Aijala

The underground mine is located in SW Finland, closed in 1961 and has been filled with water. The tailing area and the deposits rich in Au, Ag, Cu, Pb, Zn have been recently studied and are of interest for future development. In the project are addressed stability issues because there has been a collapse of the tunnel on February 7–8 2017.

gProvided by BEAK

Lausitz

The mining and post-mining landscapes of the Lausitz area cover approx. 7000km2. There are a high number of former and active pits, remaining lakes, and channels used to release pumped water to surface water bodies with significant patterns of AMD.

534i PROJECT PILOTS

The **534** project is supporting the technical experiments and validation at different phases of the mining life-cycle:

- Extraction for soil instability monitoring for securing safety within the operation, and efficient volumetric estimation.
- Closure/post-closure tackles environmental and health impact challenges.

Exploration phase

Onshore (Áramo, Spain)

Data

Methods

Sentinel-1

Sentinel-2

Landsat-9

PRISMA

ALOS PALSAR-2

COSMO-SkyMed

Airborne LiDAR

Airborne hyperspectral data

Ground spectral libraries

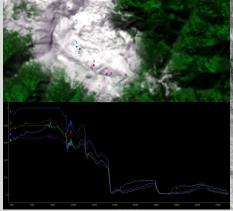
RGB combinations

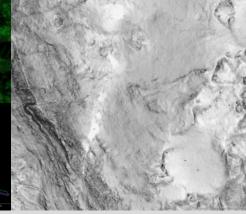
Band ratios

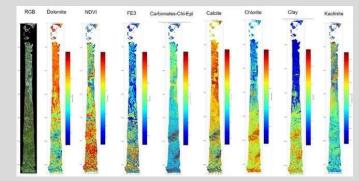
Principal Component Analysis (PCA)

K-means

Endmember extraction


Minimum wavelength mapping


Spectral Angle Mapper (SAM)


Self-Organizing Map (SOM)

Artificial Neural Networks (ANNs)

New ensemble method

Exploration phase

Shallow waters (Ria de Vigo Spain)

Data

Methods

Sentinel-1

Sentinel-2

Landsat-9

WorldView-2/-3

EnMap

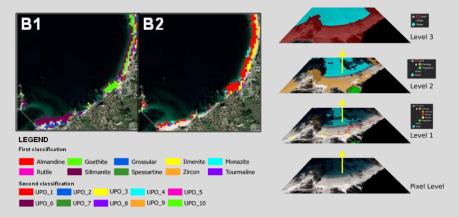
Underwater Hyperspectral Image (UHI)

Complementary spectral libraries

Pre-existing/new geological data

RGB combinations

Band ratios


Principal Component Analysis (PCA)

K-means

Endmember extraction

Spectral unmixing

Object-Based Image Analysis (OBIA)

Extraction phase

Gummern (Austria)

Data

Methods

Pléiades Neo tri-stereo

Sentinel-1

Sentinel-2

Landsat-9

WorldView-2

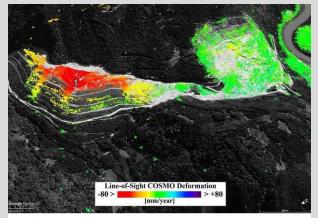
COSMO-SkyMed

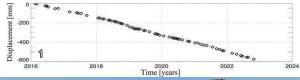
UAV data

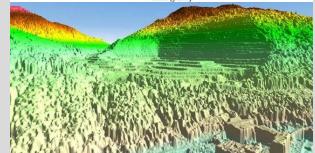
Ground GNSS stations

Digital elevation models (DEMs) production

UAV photogrammetry using Structure from Motion (SfM)


Interferometric synthetic-aperture radar (InSAR)


Change detection (Normalized Decorrelation Change Index (NDCI))


Super-resolution enhancement using Residual-in-residual Dense Block (RRDB) model

Super-Resolution U-Net (SRUN)

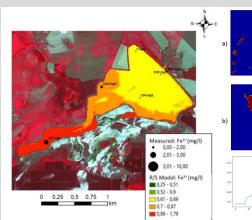
Optical-guided Super-Resolution Network (OGSRN)

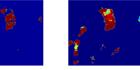
Closure and Post-closure phase

Lausitz (Germany)

Data

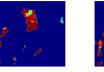
Methods

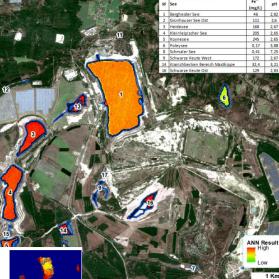

Sentinel-2 WorldView-3


PRISMA

UAV data

Geochemistry water data


Endmember extraction Artificial Neural Networks (ANNs)



Closure and Post-closure phase

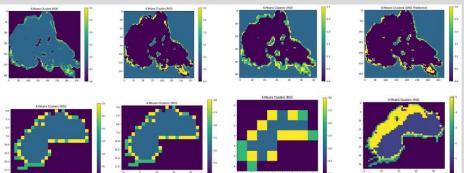
Outukumpu (Finland)

Data

Methods

Sentinel-2 UAV data Geochemistry water data K-means

Self-Organizing Map (SOM)


Artificial Neural Networks (ANNs)

Logistic regression

Random forest

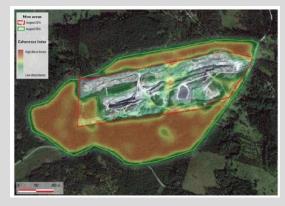
K-nearest neighbour (K-NN)

Closure and Post-closure phase

Aijala (Finland)

Data

Methods


Sentinel-1 Sentinel-2 COSMO-SkyMed Change detection (Normalized Decorrelation Change Index (NDCI))

Super-resolution enhancement using Residual-in-residual Dense Block (RRDB) model

Super-Resolution U-Net (SRUN)

Optical-guided Super-Resolution Network (OGSRN)

Ana Teodoro

amteodor@fc.up.pt

THANKS!

